Flat currents modulo p in metric spaces and filling radius inequalities
نویسندگان
چکیده
منابع مشابه
FLAT CURRENTS MODULO p IN METRIC SPACES AND FILLING RADIUS INEQUALITIES
We adapt the theory of currents in metric spaces, as developed by the first-mentioned author in collaboration with B. Kirchheim, to currents with coefficients in Zp. We obtain isoperimetric inequalities mod(p) in Banach spaces and we apply these inequalities to provide a proof of Gromov’s filling radius inequality which applies also to nonorientable manifolds. With this goal in mind, we use the...
متن کاملDiameter-volume Inequalities and Isoperimetric Filling Problems in Metric Spaces
In this article we study metric spaces which admit polynomial diameter-volume inequalities for k-dimensional cycles. These generalize the notion of cone type inequalities introduced by M. Gromov in his seminal paper Filling Riemannian manifolds. In a first part we prove a polynomial isoperimetric inequality for k-cycles in such spaces, generalizing Gromov’s isoperimetric inequality of Euclidean...
متن کاملFlat Convergence for Integral Currents in Metric Spaces
It is well known that in compact local Lipschitz neighborhood retracts in Rn flat convergence for Euclidean integer rectifiable currents amounts just to weak convergence. The purpose of the present paper is to extend this result to integral currents in complete metric spaces admitting a local cone type inequality. This includes for example all Banach spaces and complete CAT(κ)-spaces, κ ∈ R. Th...
متن کاملCurrents in Metric Spaces
We develop a theory of currents in metric spaces which extends the classical theory of Federer–Fleming in euclidean spaces and in Riemannian manifolds. The main idea, suggested in [20, 21], is to replace the duality with differential forms with the duality with (k+ 1)-ples (f, π1, . . . , πk) of Lipschitz functions, where k is the dimension of the current. We show, by a metric proof which is ne...
متن کاملGromov Hyperbolic Spaces and Optimal Constants for Isoperimetric and Filling Radius Inequalities
A. In this article we exhibit the optimal (i.e. largest) constants for the quadratic isoperimetric and the linear filling radius inequality which ensure that a geodesic metric space X is Gromov hyperbolic. Our results show that the Euclidean plane is a borderline case for the isoperimetric inequality. Furthermore, by only requiring the existence of isoperimetric fillings in L∞(X) satisfy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Commentarii Mathematici Helvetici
سال: 2011
ISSN: 0010-2571
DOI: 10.4171/cmh/234